Where does philosophy end in Zen Buddhism? From the literature, it would appear to end where knowledge that is acquired through words and concepts, i.e., speculative knowledge, cannot go any further. But this is precisely where authentic Zen begins or should at least begin.
The failure of philosophy to go any further, nevertheless, hoping to make some kind of profound intellectual breakthrough runs into Mumon’s barrier/checkpoint 關. What does that mean for the Zennist? About the barrier/checkpoing Mumon comments:
For the practice of Zen, you must pass the barrier set up by the ancient masters of Zen. To attain to marvelous enlightenment, you must completely extinguish all thoughts of the ordinary mind. If you have not passed the barrier and have not extinguished all thoughts, you are a phantom haunting the weeds and trees.
What Mumon is telling the Zennist is that their thoughts, which are the activity of thinking, are the barrier. Looking at the problem from a deeper perspective, our thoughts, if they were to suddenly cease would instantly disclose pure Mind. We would be right then and there, Buddhas. On the other hand, to generate thought through philosophical speculation about Zen only acts to hide pure Mind.
In trying to make sense of this odd enlightenment event at 645, it appears that as a matter of philosophical speculation we can go no further. We are up against the barrier/checkpoint.
645. When master Gaoding Jian first went to Deshan, he saw Deshan on the other side of a river, sitting on the riverbank. He asked after him from across the river; Deshan beckoned him with his hand, whereupon Jian became enlightened. Then he ran past to the side and didn’t cross the river; he returned to Gaoding and became an abbot (Treasurey of the Eye of Truth Teaching: Volume II).
Evidently, when Deshan beckoned Jian with his hand, something happened to Jian that was mysterious and profound. To be sure, he broke through Mumon’s barrier/checkpoint passing easily through the no-gate or dharma-gate. So what happened?
Some of you know what it was. I sure know what transpired when Deshan beckoned Jian with his hand or what the Buddha’s holding up a flower and blinking was about. There are many such moments when a monk suddenly sees the absolute. In a tenth of a second Deshan caught Jian off-guard, all thought had ceased for him. There it was.
Has science finally proven "esse est percipi" with an experiment?
News from yesterday:
"Back in 1961, the Nobel Prize–winning physicist Eugene Wigner outlined a thought experiment that demonstrated one of the lesser-known paradoxes of quantum mechanics. The experiment shows how the strange nature of the universe allows two observers—say, Wigner and Wigner’s friend—to experience different realities.
Recommended for You
NASA might now use a commercial rocket to fly its Orion crew capsule around the moon
Facebook’s data deals are now under criminal investigation
Zuckerberg’s new privacy essay shows why Facebook needs to be broken up
Triton is the world’s most murderous malware, and it’s spreading
North Korea’s military has stolen more than half a billion dollars in cryptocurrency
Since then, physicists have used the “Wigner’s Friend” thought experiment to explore the nature of measurement and to argue over whether objective facts can exist. That’s important because scientists carry out experiments to establish objective facts. But if they experience different realities, the argument goes, how can they agree on what these facts might be?
That’s provided some entertaining fodder for after-dinner conversation, but Wigner’s thought experiment has never been more than that—just a thought experiment.
Last year, however, physicists noticed that recent advances in quantum technologies have made it possible to reproduce the Wigner’s Friend test in a real experiment. In other words, it ought to be possible to create different realities and compare them in the lab to find out whether they can be reconciled.
And today, Massimiliano Proietti at Heriot-Watt University in Edinburgh and a few colleagues say they have performed this experiment for the first time: they have created different realities and compared them. Their conclusion is that Wigner was correct—these realities can be made irreconcilable so that it is impossible to agree on objective facts about an experiment.
Wigner’s original thought experiment is straightforward in principle. It begins with a single polarized photon that, when measured, can have either a horizontal polarization or a vertical polarization. But before the measurement, according to the laws of quantum mechanics, the photon exists in both polarization states at the same time—a so-called superposition.
Wigner imagined a friend in a different lab measuring the state of this photon and storing the result, while Wigner observed from afar. Wigner has no information about his friend’s measurement and so is forced to assume that the photon and the measurement of it are in a superposition of all possible outcomes of the experiment.
Wigner can even perform an experiment to determine whether this superposition exists or not. This is a kind of interference experiment showing that the photon and the measurement are indeed in a superposition.
From Wigner’s point of view, this is a “fact”—the superposition exists. And this fact suggests that a measurement cannot have taken place.
But this is in stark contrast to the point of view of the friend, who has indeed measured the photon’s polarization and recorded it. The friend can even call Wigner and say the measurement has been done (provided the outcome is not revealed).
So the two realities are at odds with each other. “This calls into question the objective status of the facts established by the two observers,” say Proietti and co.
That’s the theory, but last year Caslav Brukner, at the University of Vienna in Austria, came up with a way to re-create the Wigner’s Friend experiment in the lab by means of techniques involving the entanglement of many particles at the same time.
The breakthrough that Proietti and co have made is to carry this out. “In a state-of-the-art 6-photon experiment, we realize this extended Wigner’s friend scenario,” they say.
They use these six entangled photons to create two alternate realities—one representing Wigner and one representing Wigner’s friend. Wigner’s friend measures the polarization of a photon and stores the result. Wigner then performs an interference measurement to determine if the measurement and the photon are in a superposition.
The experiment produces an unambiguous result. It turns out that both realities can coexist even though they produce irreconcilable outcomes, just as Wigner predicted.
That raises some fascinating questions that are forcing physicists to reconsider the nature of reality.
The idea that observers can ultimately reconcile their measurements of some kind of fundamental reality is based on several assumptions. The first is that universal facts actually exist and that observers can agree on them.
But there are other assumptions too. One is that observers have the freedom to make whatever observations they want. And another is that the choices one observer makes do not influence the choices other observers make—an assumption that physicists call locality.
If there is an objective reality that everyone can agree on, then these assumptions all hold.
But Proietti and co’s result suggests that objective reality does not exist. In other words, the experiment suggests that one or more of the assumptions—the idea that there is a reality we can agree on, the idea that we have freedom of choice, or the idea of locality—must be wrong.
Of course, there is another way out for those hanging on to the conventional view of reality. This is that there is some other loophole that the experimenters have overlooked. Indeed, physicists have tried to close loopholes in similar experiments for years, although they concede that it may never be possible to close them all.
Nevertheless, the work has important implications for the work of scientists. “The scientific method relies on facts, established through repeated measurements and agreed upon universally, independently of who observed them,” say Proietti and co. And yet in the same paper, they undermine this idea, perhaps fatally.
The next step is to go further: to construct experiments creating increasingly bizarre alternate realities that cannot be reconciled. Where this will take us is anybody’s guess. But Wigner, and his friend, would surely not be surprised."
(MIT Technology Review)
Posted by: Tivra | March 14, 2019 at 08:56 AM